
Best 
Available 

Copy 





The Gain-Spread-Excitation
Theorem

N. Kroll
M. Rosenbluth

May 1984

JSR-82-1 10

Approved for public release; distribuion unlimited

Ei : 

JASON
LI - The ME Corporation

1820 Dofley Madison Boulevard
McLean, Virginia 22102



TABLE OF CONTENTS

1.0 INTRODUCTION................ ............................ I

2.0 THEORETICAL FRAMEWORK AND STATEMENT OF THE
GAIN-SPREAD-EXCITATION THEOREM....... ............ ...... 5

3.0 TRANSFORM4ATION TO ANGLE ACTION VARIABLES ......... 9

4.0 PROOF OF THE GAIN-SPREAD-EXCITATION THEOREM ............. 19

5.0 IMPLICATIONS FOR STORAGE RING OPERATION ........ o........26

6.0 SUMMARY AND CONCLUSIONS .................................. 42

REFERENCES.......................... ........ 43

DISTRIBUTION LIST............................... ...... D-1

D'ICTAB

-Distrib~ution/f
"Avnilaltu~ity Codes

DistAvaqil and/or

!Dis Special



1.0 INTRODUCTION

The possible utility of storage rings as electron sources

for efficient high power free electron lasers has been under study

for a number of years. Studies of the storage ring behavior of

uniform one dimensional wigglers of the sort employed in the

original Stanford free electron laser showed them to be unsuitable

for this purpose.1 92 ,3 The limitation arises from the fact that,

while electrons passing through the wiggler on the average deliver

energy to the laser field, individual electrons may gain or lose

energy. As a result, emerging electrons have a larger energy spread

than entering electrons. The growth of energy spread has to be

damped by the synchrotron radiation, a circumstance which limits the

laser power output to be a small fraction of the synchrotron

radiation and hence limiting the overall efficiency.

Attempts were made to remedy this situation by introducing

axial variations in the wiggler structure, but these proved to be

unsuccessful. An understanding of this lack of success was provided

by the gain-spread theorem discovered by John Madey 4 and proved with

increasing generality5- 8 over the years. This theorem showed

induced energy spread to be an intrinsic part of any one dimensional

FEL system operating close to a linear regime and hence subject to

the efficiency limitation noted above.
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The gain expanded free electron laser was proposed as a

solution to the above described problems. In its originally

proposed form it consisted of a standard transverse FEL wiggler

modified so that the wiggler field acquired a transverse gradient

which included a non-alternating component. Electrons of different

energies were to traverse the wiggler in different transverse

positions, with the transverse gradients arranged so as to provide

equal transit velocities for all of the electrons. Since the FEL

amplification process is based upon a velocity resonance, it was

expected that gain could, in this way, be made energy independent.

Since the transverse gradient wigglers are two dimensional

structures, the proofs of the gain-spread theorem did not apply to

them, and the insensitivity of gain to electron energy was thought

to make efficient storage ring operation possible.9 Subsequent

analysis of the uniform transverse gradient wiggler in the form

originally proposed showed that while energy independent gain could

be achieved, the amplification process acted as a driver for

transverse betatron oscillations.- Numerical analysis suggested

that this would result in limitations for storage ring operation

similar to those of one dimensional wigglers. There followed an

extended series of investigations of various two dimensional

configurations, which, while incorporating the principle of gain

expansion, attempted to avoid transverse excitation (i.e., the

excitation of betatron oscillations). The systems were complex and
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the analyses ultimately numerical, often containing plausible but

not well controlled approximations. Some of them produced quite

encouraging results, but there was no plausible pattern of behavior

with respect to parameter variation, and no physical understanding

of what purported to be successful designs was provided by the

numerical analyses.

In a recent report,11 Rosenbluth and Wong obtained exact

analytic results for one of the configurations that had been studied

numerically. These results included exact gain formulas, Manley

Rowe relations, and an extension of the gain-spread theorem to

include transverse excitations. These results proved to be of

considerable assistance in refining the numerical analysis that

preceded t1

Previous unreported analyses as well as the above stated

result suggested that the gain-spread-excitation theorem for two

dimensional systems was of comparable generality to the one

dimensional gain-spread theorem. In sections 2, 3, and 4, we shall

show this to be the case and will see that it (1) implies the

impossibility of designing a two-dimensional wiggler which produces

linear gain simultaneously with vanishing lowest order spread and

excitation, and (2) a wiggler which produces vanishing lowest order

excitation is governed by the gain-spread theorem. In section 5 we
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shall discuss the implications of these results for the quasi-linear

operation of storage ring FELs and conclude that they constitute a

possibly insuperable obstacle to the avoidance of the limitations

found in refs. 1, 2, and 3.
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2.0 THEORETICAL FRAMEWORK AND STATEMENT OF THE GAIN-SPREAD-

EXCITATION THEOREM

As in ref. 6 we begin with a Hamiltonian of general form

K(E,t,p,x;z) = K (E,t,p,x;z) + K1 (E,t,p,x;z) +
0 (2.1)

where z is taken to be the independent variable, and Hamilton's

Equations take the form

dE 3K dt _ l

(2.2)

dp_ 3K dx aK
dz Wi U-F T

The time-independent Hamiltonian Ko  describes the motion

of electrons in the wiggler in the absence of radiation, and z is

the axial coordinate of the wiggler. While we have magnetic fields

primarily in mind, electrostatic field may also be present. The

treatment will be sufficiently general that Ko  could include the

static storage ring fields as well as the wiggler fields and z can

represent any conveniently chosen variable (e.g., the azimuthal

angle about the center of the storage ring) that describes the

progress of the electrons around the ring.

Radiation is taken into account by adding time-dependent

terms Kn  to the Hamiltonian of order Cn where 6 is some small
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parameter. The time averages of the Kn  are assumed to vanish, and

some additional conditions on the time dependence will be specified

later.

We designate a one parameter family of orbits (the

parameter is E ) of Ko  as nominal orbits, represented by

Xo(z,E) , po(zE) , and to(zE) with to(O,E) equal to zero. If

one were considering the entire storage ring, we would specify these

orbits to repeat themselves on performing a complete cycle around

the ring, so that they would be periodic in z with period

corresponding to the complete cycle. Alternatively, if the wiggler

structure were periodic, one might choose them to have the period of

the structure. In an ideal gain expanded design one arranges to

have to independent of E . Since, however, we wish to be

general, we do not specify any additional conditions.

While E is a constant of the motion in the absence of

radiation, the presence of radiation will cause it to change. The

aim of a gain expanded wiggler design is to arrange things so that a

particle entering on a nominal orbit of energy E and changing its

energy to E' on traversal of the wiggler emerges on the nominal

orbit of energy E' . To assess the extent to which the objective

is achieved, one considers deviations from the nominal orbit

designated by

6



x8 =x - X p8 = p- PO (2.3)

In the absence of radiation and for small amplitudes, a Courant-

Snyder invariant for these variables can be defined which is z-

independent and characterizes the extent to which the orbit deviates

from the nominal orbit. We refer to this quantity as an action J

because we shall construct a canonical transformation which reduces

the Hamiltonian to angle action form. In the presence of radiation,

both J and E became z-dependent. Designating these z-dependent

corrections by En, in , where n refers to the order in e , we

shall show that

<E> I a 2 1 a)
< 2 > = E <E ,1> + - <E IJ> (2 .4 )

0E>=I a 0 2> + 1  a <EJi> (2.4)
2 2j- 1 'TF 1W1I

o o

o o

We refer to these two equations as the gain-spread-excitation (GSE)

relations. The indicated averages are taken over time and the

action phase.

7
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3.0 TRANSFORMATION TO ANGLE ACTION VARIABLES

Following the pattern of ref. 11, we shall perform a series

of canonical transformations all based upon a generating function of

the form GC(E,t',p',x;z) with

X, G
ap"

aGax

E' G
at'

ac

3E

K' K + 3G/3z

The transformations to be employed affect the K

n

n 1 , only by virtue of the fact that the variables upon which

they depend must be expressed in terms of the final canonical

variables. We shall therefore keep track of these relations among

variables but retain only Ko  in the discussion given below.

Recall that xo(ZE) , po(zE) , to(Z,E) are any

conveniently chosen one parameter set of solutions to the equations

8
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of motion generated by Ko  We begin with

Ga(E,t 9 p 8 ,x,Z) = pa(x - xo0 + xp + t E (3.2)

which yields

p8 = p - PO (3.3)

x8 = x - X (3.4)

t = tB + x 1 p--- P3.5)

Ea = E (3.6)

Koa = Ko(Esp ° + p,xo + xaz ) + x -- P -0

(3.7)

In order to simplify (3.7), we make a small amplitude expansion of

Ko about the nominal orbit. Hence we write



*d

aK aK
K (E,p + p ,x = 00 + x 00 + P 00 +

0 0 0 TR p

2 2
a2K a2K

I oo 2 00
a x a 0 + - 0

2

1 00 2
+2 2
a 0

ap 0 x 0 1 2KX 8 -Po ajo+I Ax2 +
K Koo - xB z - + P Yz 2+  A B+

+ B p + 1 c 2 (3.8)

where K = K0 (E,poxoz) . Although we have omitted higher order

terms in x , p8  in (3.8), we shall not do so in what follows.

This is justified because the higher order terms may vanish or make

smaller contributions than higher order terms which will appear

subsequently.1 1 For compactness we have designated the second

derivatives by A , B , C . They are to be thought of as

determined functions of E and z . We assume A to be non-

vanishing and positive. To complete the first transformation, we

combine (3.7) and (3.8) and obtain

10
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K 1 2 1 2 apoKoa fi  A pB + B xB 8 +  C x 8 + Ko + x° - .
~~A 8  aBxp + 2 . 008 oK a

(3.9)

Next we choose

E ,a0
G b O + t E - f ( 0  - todE' (3.10)

which yields

IA
P83 = P8

x =x

E =E8

-ap 0 ax 0(.1
t =t +t 0 +x OUsing t equations (3.11)

Using the equtitons of motion, we see that

11



a o o ap o x op 0 t
z X E- to = x 0 7o 0 - l Y-

Po + 3K00 K 00 ax0

+ 0

+( 3K 00 )
ao (3.12)
K + a_ PoXo

Hence

3C 0 x (3.13)

and completing the second transformation we find

K = I Ap 2 +Bpx + C x 2  (3.14)
ob 7 a a Pa a

This Hamiltonian can be reduced to the harmonic oscillator

form, k,(p2 + Q2 )/2 , by means of a linear transformation. Thus we

write

C - 1 P2f + I1 2 f+ x +T (3.15)

which yields

12



Q Pfl + x f3  (3.16)

po8  x f2 + Pf3  (3.17)

l"T B  + 1p2 afl 1 2 3f2 p f3

W- + 1 X a + x2p (3.18)

E =E
T

We determine the functions fi by requiring that (3.16) and (3.17)

transform a solution Q - cos k z of the harmonic oscillator

Hamiltonian to a solution of the equations of motion of Kob * To

this end we make use of the easily verified fact that a Kob

solution may be expressed in the form

xB a V" cos* (3.19)

where

z dz" (3.20)

and B is a solution of

1 *' . *2 + AC 82 1 (3.21)

13



wi th

8* = 8' +A - 2B 8 (3.22)

In the above expression a is an arbitrary constant to be

determined along with f's , and the prime in (3.21) and (3.22)

indicates differentiation with respect to z . Note that solutions

of (3.21) can never vanish and may be taken positive. Using

Hamilton's equations to determine the related P and p8  and

applying (3.16) and (3.17) we find a = 1 and

f - tano (3.23)

f2 "( B* - tanf)/AO (3.24)

f3 seco/IA7 (3.25)

E - k - z (3.26)

Combining these with (3.16) and (3.17) we find

x0 /FE (Q coso + P sino) (3.27)

14



P5 ~ cost - Sint) + P *sint + cos)

It is, of course, not necessary to know the origin of the

f's to carry out the transformation. Using only (3.15), (3.16),

(3.17), (3.20) and (3.22) through (3.26) we find

3G

Koc Kob + z

-(Q cosO+ Psin4O)2( 3pp*, _Lp*2 4- AC~ 2~ 1)

Now applying (3.21) we find

K O* 2 (3.29)

Since Koc is z-independent

j = (P2 + Q2) (.0

is a constant of the notion. Inverting (3.27) and (3.28) and

substituting, we find

15



J = + I + ax2 - x8 p8  ] (3.31)
I a T( --

which we recognize as the Courant-Snyder invariant. Evidently, for

a given J , all associated values of pa I x must lie on an

ellipse of area 2wJ . The orientation and aspect ratio, of course,

depend upon z . It should be noted that a whole set of Courant-

Snyder invariants exists because we have only required that a

satisfy (3.21). For a study of storage ring operation one would

normally choose $ to have the same periodicity properties as the

nominal orbits. If such periodic solutions do not exist, then the

nominal orbits are unstable and unsuitable for storage ring

operation. One would, of course, require of a design that stable

nominal orbits exist. For a periodic linear structure one would

have the option, as for the nominal orbits, of choosing a 8

function of the same periodicity. The parameter k is also

completely arbitrary and has no effect on (3.21) nor on the relation

between J and (x,,p8 ) . Again there is a natural choice when

dealing with a periodic situation, and one would choose k so that

has the same periodicity as 8 • In that case k represents

the frequency (wave number, really) of betatron oscillations, and,

as noted in ref. 10 has an important bearing on the amplification

process. None of the above has any bearing on what we are about to

prove, however, as the theorem holds for every choice of 8

16
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For our final transformation we convert (3.30) to angle

(6) action (J) form in the usual way. Thus

Gd - t E + J in- 1 Q + -L( I - Q2/2j (3.32)

which yields

E=E , =

e = sin - I Q/V2- or Q= 2- sine (3.33)

P =V'2= _2 T cosO (3.34)

Kod = k8 J . (3.35)

Our final set of variables (E, T, J, 8) are related to

the original set (E, t, p, x) as follows:

x T TWr sin(4 + 8) + x (3.36)

IIp =cos(¢ + e) + 0 sn( + 6) + P (3.37)10

17



t =T + t- J +1 JAO sin ( + 6) - A

+ JAB sin2(¢ + 0) + B +  sin(o + 6) 7E

- 2JA (os(€ + 6) + + (3.38)

Our final Hamiltonian is simply

H = k J + I Kn(E,t,p,x;z) (3.39)
n-I

where (3.36), (3.37), and (3.38) are to be used to reexpress t

p , x in terms of T , J , and e . Note that despite the

singularity in Gc where coso vanishes, the connections between

the old and new variables and between K and H are non-

singular. As an overall algebraic check we have verified that the

Lagrange bracket relations are satisfied.

18

,] d t .. .



4.0 PROOF OF THE GAIN-SPREAD-EXCITATION THEOREM

In this section it will be convenient to choose k to be

zero. As a consequence the zero order (in e ) values of the

canonical variables (Eo, Top Jos 8 ) are all independent of z
0 00

and will be taken to be the initial values. In addition we shall be

interested only in first order corrections and time averaged second

order corrections to these quantities. Recalling that the time

average of K2  vanishes, we easily see that only K1  can

contribute and hence we retain only this term in the sum over n .

Finally, we note that as a consequence of (3.36), (3.37), and (3.38)

K1  is a periodic function of 8 and hence may be represented by a

Fourier series.

We could proceed by assuming only a steady state stationary

property for the time dependence as in ref. 6, but in the interest

of simplicity we specialize to a single frequency (taken positive)

and write

K1 = e e I H m(E,J,z) e im  + complex conjugate

(4.1)

Then from Hamilton's equations

19

-I



dJ =i eiWT m Heime +C.C. (4.2)

dE = iew eiWT H eime + C.C. (4.3)

de iT am m (4.4)
dz = e aJe + c.c.

dT eiat Hm eim +
dz -E eC.C. 

(4.5)

We define

Im(EoJoZ )  fz Hm (Eo,Joz') dz' (4.6)

Then for the first-order quantities we find

iciy o  ima%

Jl = -if e 0 m I m e 0+ c.C. (4.7)

E = iew e 0 I e + c.c. (4.8)i-n
Ilnt o  3I1 lineo

e = c e 1 e + c.c. (4.9)
0

iT o 0 I m  im8o
T= -e e 0. - e + c.c. (4.10)

0

Note that the time average of all first-order quantities vanishes.

The quadratic averages which appear in the OSE relations may now be

20
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computed. Denoting averages over T and e by < >, we find0 o

= 2 m 2 jIJ2 (4.11)

<2 2 w2 (4.12)<1 = 22 I

<E1JI> = -2 w£2 1 m I m  (4.13)

Because general relations have proved to be useful in checking both

numerical and analytic treatments of specific realizations, we note

that (4.7) and (4.8) imply

a i - E 1 (4.14)

TT- = - *M
0 0

Proceeding to second order we have

dd 2 - i WT 0 meime ' 4(J + El + iWI+ imlHo+ c.c.

0 0
(4.15)

dE2iW'r ime, 3 aini
=z- i e 0 e J l + E 9 + iWT1 + Ira01 Hmo + c.c

0 0
(4.16)

Averaging, we find

21



dJ 2  MR -nS (4.17)

dE2  = 
2  (4.18)<Z2- = [ - = Rm

where

H H* 31* 1 a
mo + mo I + H m m (4.19)

Rm =T m +  m mo m +  Hmo(1
0 0 0 0

aH * H* I* * I
S o I + -- I H -H

3E m E i io io3+ H (4.20)
0 0 0 0

Next observe

z (Hmo m + H aI ) dzImom mo m I

0 dz aH(Z,) 0d + (z) dz

z z= f dz DHo(Z, 1 + f Ho
1 H (z).o mo (2' d z2o 0 z1

= DIl* (4.20)
m m

Hence

22
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I iI
R Rdz = II (4.21)

o

S dz Xm (4.22)m E

Combining these with (4.17), (4.18), and (4.11) through (4.13) we

have the GSE relations

0 > = I a <j2> + I a <JE > (4.23)
2 T 1j 2Wi T11o 0

<E2> - 1 a 2> +.1 <JE> (4.24)
2 T2 ' -E I T T 1 1 *(.4o 0

Since the case of small excitation has been of particular interest,

we examine the J + 0 limit of these relations. It is clear from
0

the relations (3.36)-(3.38) that we have

Im = L m(E o'J z) J (4.25)

where Lmo = Lm(Eo,0,z) is finite or zero. Hence in the limit of

small Jo we have

<2 >= 22 LI12+ _ 2)(4.26)

<E >= 2e 2w2  LOOt 2  (4.27)

23
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<E >- 2c2  0 oL_012 - 012 (4.28)

which yields at J 0=- 0
0

<32 = _11012  (4.29)

22aLi~l 2 (LiI L0 2

(4.30)

It is therefore clear that if <J 2> vanishes, that we have the

usual gain-spread relation since the a <E J > term vanishes.

Furthermore, if <E 2> also vanishes, then, as has been noted

previously, 5 so does <E2> , and there can be no gain.

Some comment on the time dependence assumed in Eq. (4.1) is

appropriate. We could easily have replaced ei  Hm by

e Hmk . The proof is essentially the same; expressions like
k

W 121 in (4.12) became I I , etc., (4.23) and
m m m k

(4.24) are unchanged and (4.29) and (4.30) are replaced by

Q >.2 ' (11, 2 + iL 2  (4.31)

24



> 2 2 Ioko 1Lo 2 + kL 2)

k 0 -
(4.32)

Of course, the time averages must be carried out over time

intervals which cause the frequency cross terms to vanish, and if

the frequencies are incommensurate the OSE relations may contain

errors of order 1/wT where T is the averaging time.

For application to the next section we note that if ka is

not set equal to zero, equations (4.11), (4.12), (4.13), (4.23), and

(4.24) are unchanged. The expression for Im [Eq. (4.6)] acquires

a formal dependence upon k, , viz.

8

I m (EOJOZ) f dz' Hm(Eo,Joz' ;k)exp imk8 zo (4.6')

0

but from (3.36), (3.37), and (3.38) one sees that H contains

= - ksz only in the combination e + * from which we conclude

Hm(E ,J 0z';k) = Hm (E ,Jo z')exp - imk z' (4.33)

and therefore that Im is in fact also independent of k

25



5.0 IMPLICATIONS FOR STORAGE RING OPERATION

In this section we present a discussion of the implications

of the GSE relations for quasi-linear storage ring operation of the

FEL.

In the absence of the laser fields, the combined storage

ring and wiggler can be regarded as a particular example of a

storage ring with a somewhat unusual system of static fields. The

usual concepts and principles of storage ring design apply. Thus

z will be specified to represent a cyclic variable such that

(x,z) and (x, z+Z) represent the same physical point. Hence the

Hamiltonian will be periodic in z with period Z . The system

will be designed so that stable nominal orbits of period Z exist

and are uniquely defined for each energy lying within some specified

acceptance range. The natural and standard choice for 8 is then

the (unique) periodic solution of (3.21), which, on account of the

stability assumption, must exist. The natural and standard

specification of ka is

1k =- f dz'/O(z') (5.1)

0

which causes 0 to be periodic as well. The conventional "betatron

number" v is defined by v - k Z/21 . Because we require the

26
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nominal orbits to be unique, v cannot be an integer, and to avoid

stability problems one designs the ring so that v is quasi-

irrational, that is to say, not expressible as the ratio of small

integers. As a result, a given electron with a specified J and E

tends to uniformly sweep through all action phases e in successive

transits around the ring. Accordingly, in the absence of laser

radiation the electron distribution function will be e

independent. We have neglected the effect of synchrotron radiation

and the RF cavity in the above but it is clear that the conclusion

will continue to hold when they are taken into account.

We can formalize the above by means of the Liouville

Equation, which for the zero'th order Hamiltonian takes the form

0 + k8  0 = 0 (5.2)

The general solution to (5.2) is

f = F(6 - k z,T,J,E) (5.3)

where F is an arbitrary function of its arguments except for the

periodicity conditions which follow from

fo (,T,J,E,z) fo(6 + 2vT,J,E,z) (5.4)

27
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f [6, T- T(E), J, E, z + Z) = f (0, T, J, E, z) (5.5)

where T(E) is the one cycle transit time of the nominal orbits and

is given by

z
T =f t dz (5.6)

0

Equations (5.4) and (5.5) are consequences of the fact that the

arguments on the left and right hand side represent the same

physical space time point [see (3.36), (3.37), and (3.38)].

We note that the space time structure of the micropulses is

contained in the dependence of F on T . On account of the RF

cavity and syncrotron radiation the distribution function at fixed

z will settle down to a periodic function of T with period Tc

determined by the cavity frequency. We simulate this effect here by

neglecting the energy dependence of T(E) , assuming T(E) = T Ic

and requiring that F be periodic in T with period T . Hence

the steady state F must have both the 2w periodicity in 0 and

the Z periodicity in z . Thus F will be invariant to any shift

Ae - 2u(r + vs) where r and s are integers. If v can be

expressed in the form m/n where m and n are relatively prime

integers, then a periodicity in 0 of 2r/n is implied; while if

v is irrational, F must be e independent. We have, however,

28
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assumed that n is not small, and noting that the synchrotron

oscillation-synchrotron radiation processes will cause some

additional smearing not included in the above argument, we conclude

that f must be effectively e independent.
o

We now wish to take account of the presence of the laser

field. We recall that the GSE relations involve an average over T

and 6 . In order to apply them to a discussion of storage ring

operation we need to establish the appropriateness of such

averages. We first note that the r variation due to the

micropulse structure is slow compared to that due to the optical

frequency. The T averages are really averages over optical phase

and are not significantly affected by the micropulse structure. We

consider the distribution function to consist of a zero'th, first,

and ,cond order part in c , and we consider their effect on first

and second order energy transfer and transverse excitation processes

which take place as the electrons pass through the wiggler. The

first order part, fl , contains exp iwT factors. Due, however,

to the rapid energy dependence in exp iwT , and the effects of J

and E changes induced by synchrotron radiation and the cavity on

cycle times for individual electrons, there can be no phase

correlation between the WTr dependence of f, and that of the

laser field present when the pulse is passing through the wiggler.

Thus second order effects which could in principle be produced by

29



the action of K1  on the entering fl contribute nothing on the

average. Time stationary terms do appear in f2 , which may also be

e dependent. However, since f2  is already second order, its

effect on changes in E , J must be of higher order (the average

effect is fourth order). One might ask whether the laser could

induce a cumulative buildup of a dependent f2  of the same order

as fo • We consider this to be precluded by the quasi-irrational

character of v , which has the same e smearing effect upon f2

as it has upon fo "

We now proceed to a discussion of a phase and e averaged

distribution function F(JE,z) . (We ignore the micropulse

structure here.) Designating the wiggler entrance and exit by

z = 0 and L , respectively, noting that wiggler induced changes

in F are second order and hence small, and carrying out a standard

Fokker-Planck type development, we find that

AFL F(J,EL) - F(J,EO)

- (E 2 >F) (<

7 2 2 >2

+ I a 2 < F 2 (EJ>)+Ia 2(<j 2>F)

(5.7)

30

Ir.LL



We are not going to write out a complete Fokker-Planck equation for

the entire storage ring and are instead going to aim for an upper

limit estimate of laser efficiency based upon entropy

considerations. To this end we compute the laser induced entropy

change. Let

S - f F ln F dJdE (5.8)

then

AS= - J AF ln F dJdE - J AFdJdE . (5.9)
L

Conservation of probability requires f AF to vanish. To

obtain this result formally from (5.7), we make use of the fact that

F must vanish when either J or E are infinite to obtain

2 I <EE I JI

SAFL dJdE = I[F(<E2 > - --- 7

I E>2 -> <E J > dJ = O
' 1 E T 1 1 4iij I E=O

a<J2 > a<E >
+ f F

t(32> 1- T- 7-a

j1 2 3F I1F

<-i <EJ11>'a EI-
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Applying the GSE relations (4.23) and (4.24) and the small J

formulas (4.26) and (4.28) we have

I AFL dJdE 2 - JE F> + <ElJI> a=j dJE= 0

=0 . (5.10)

The last line follows from the fact that the storage ring aperture

will preclude non-zero values for 8F F at E =0 ,as well as

from the fact that all laser induced processes will become

ineffective at E = 0 . Combining (5.7) (5.9) and (5.10), we have

-2
ASL = [<E2 >F) + , (o2 >F) - (E'F)

2 ( <E JI>F)  I a 2 (<J 2>F 3Ein F dJdE .

(5.11)

Integrating by parts and applying the arguments used in connection

with (5.10) to eliminate boundary terms, we obtain
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AS< 1 aF2 > Ia E i>F +

+1f 21 7 F" 1 7T1 1 WE

+ I <E 2> - + <E J> I 3E I

< J >  a <J 2 > - 1a<EJI

12 1 (3\1 7 n 1~ 1
+ I- <J2 > I 2 + <E J > I -F IdJdE

Another application of ti, GSE relations provides us with the useful

form

-1 2> (IF) 2 EJ IF IF + 2 13F) 2  dJdE
as L  T f [<E I + 2<EIJl> n 77 + <J1 > ("a I.r

(5.12)

Next we apply (4.11), (4.12), and (4.13) to obtain

A 2 2 (waFm IF)2 dJdE (5.13)"L : mr I,,! ml IS - 7T
m

from which we conclude ASL > 0 as one would expect.

Now consider the laser energy generation per particle,

AE , given by
L
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AEL = f <E2> F dJdE . (5.14)

Applying (4.24) and integrating by parts we find

(E=1 < 2>3 E J > F ) dE(5.15)

Again applying (4.12) and (4.13) we have

AEL = 2 1 f llm2 w W 3F m F )dJdE (5.16)
m

From (5.13) we see that in order to have zero AS we must haveL

either ImX or 3F m 3F zero for all m . If this were

the case, however, (5.16) tells us that we also have zero AE
L

Hence we have rigorously shown that gain (or loss) requires entropy

production. In order to have a steady state the total entropy

production in a cycle must vanish. Since the only entropy sink

available is the synchrotron radiation, we see that laser gain must

be limited by the synchrotron radiation.

We now seek a lower bound on the entropy production

associated with a specified AEL . To simplify progress in this 1
direction we restrict our attention to fully gain expanded systems,

that is, systems for which the energy variation of <E2>

<EJ[1 > ,and <J2> within the storage ring aperture can be

(Ji>
34
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neglected. We have also had to assume that E and J are

uncorrelated in F , that is

F(J,E) -F 1(J)F 2CE) (5.17)

so that our lower bound will be rigorous only for uncorrelated

distributions.

Applying (5.17) to (5.12) and neglecting the energy

dependence of the various < > averages, we can carry out the energy

integration to obtain

1dF1 F

1- f d (<j2 1 d <E2> 1 1)L 7+ 7 (5.18)
1 A

where

1 dE (5.19)

AE 2 '

The aperture width is typically related to the RMS spread

given by

6E2 = f (E-Eo)2 FmdE (5.20)

with
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E J EF2 dE . (5.21)

A lower limit on AS may be specified in terms of these quantities
L

by choosing F2  so as to minimize (5.19) subject to specified

values of 6E2  and E . A simple calculation shows the propero

form to be Gaussian, for which AE2  6E2  Hence

1 1 (5.22)

AE 6E

Again making use of the gain expansion assumption we find

AEL = - - J F1  <E J > dJ

dFI
. f <E J > dJ (5.23)

and applying (4.11), (4.12), and (4.13) we have

2(
2 dFF

AS >9 E2 1f 2 [.m2 1) + W2 'J .dJ/FL L Lm U TiSE-

m 6E

(5.24)

6F C2 f12 WMdF1  J5.

Combining (5.24) with (5.25) we obtain
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S 2 ( 2 ( wF1) dJ/F + 2AEL
= m + dF 1  6E

m
(5.26)

and hence that

2AEL

ASL > --E (5.27)

It is possible to design a system and determine an F for

which the lower limit is actually achieved. The system must be

designed so that a single 1112 dominates (with m > I in order

to get gain). F2 must be chosen to be Gaussian. The extra term

then becomes negligible if

dF wF
m + = 0

or

JmdE p - . (5.28)

We have, of course, no reason to believe that the solution to the

Fokker-Planck equation would actually take the form which we have

found for the minimizing F . The general form found for F , F1
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and F2 are all quite plausible but we see no reason to assume that

<J> = mE , as implied by (5.28), will emerge.

Similar relations hold when there is loss instead of

gain. In particular (5.27) continues to be valid when AEL  is

replaced by its absolute value. To achieve the limit one must then

take m negative and replace it by its absolute value in (5.28).

We now calculate the entropy change due to the synchrotron

radiation. For this purpose we may ignore the presence of the laser

radiation and introduce the radiation damping of synchrotron

oscillations in a phenomenological way. We study the distribution

function at z = zc , a point just before the electrons enter the

microwave cavity, and consider its change as it makes one turn

around the storage ring. That is, we study

AFR = F(J,ERZ,Z + Z) - F(J,E9QZc)

(5.29)

In (5.28) we have replaced the time by the synchrotron

oscillation phase Q , and have on the basis of arguments given at

the beginning of this section assumed that there is no dependence on

the action phase 0 of the betatron oscillations. An adequate

phenomenological Fokker-Planck expression for AFR  is
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AF (AE F)- (A F) (a2 F) (5.30)R a (A2F

with

AE = - 2As(E-E o -X

ASI - (E-Eo

AJ = -2AjJ •

Here AE ,A , and AJ represent the change in the variables

E , , J which occur as a result of passage through the

microwave cavity, wiggler magnet, and transport around the ring;

X and V are constant parameters which determine the synchrotron

oscillation frequency, E is the equilibrium energy, and AS , Aj

represent synchrotron oscillation and betatron oscillation damping

constants per turn. Noting that f FRdEdJdO = 0 we find

ASR = - f AFR ln FdJdEdQ

f ( AE -8F + Ai 8F- + A 3F dJdEdQ

-2(A S + Aj) (5.31)
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Now applying the Robinson theorem 13 for plane orbits we have

Rs
ASR = -3 (5.32)

0

where RS  is the synchrotron radiation per turn per particle.

Combining (5.32) with (5.27) we obtain our principal result

E , 3 RS .(5.33)
L 'T r-

0

This limit is essentially the same as that found in ref. 1.

for the standard one dimensional uniform wiggler and can be shown to

hold quite generally for any one dimensional wiggler which satisfies

the gain-spread theorem. Because a necessary connection between

gain and entropy production has been established by equations (5.13)

and (5.16) and because (5.33) has been established in the two

extreme cases of no transverse excitation and full gain expansion,

it seems very likely that a relation differing from (5.33) only by a

numerical factor of order one holds quite generally.

A question which one might raise in connection with this

result and which will be addressed in a future publication is

whether it would be practical to improve storage ring laser

efficiency by increasing 6E/E from the conventional 0.01 usually
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assumed to say 0.1. Should this prove to be feasible from the

standpoint of storage ring design, the question of whether

sufficient laser gain is available under these circumstances to

permit laser operations would remain. Transverse gradient wigglers,

because of their large bandwidth in energy, may have an important

advantage here. In the conventional zero gradient wiggler the gain

tends to vary as the square of the reciprocal energy aperture, while

for the transverse gradient wiggler designed to operate at the

m - 0 resonance it falls off only linearly. Gain at the m = 1

resonance is not directly affected by the large aperture, but one

must take account of the fact that to achieve the limit (5.33) the

steady state transverse excitation must be connected to the energy

aperture as implied by (5.28). Taking into account the bandwidth in

transverse excitation one again finds that the gain tends to vary

inversely as the energy aperture. Investigation to determine which

of the available options may be most advantageous is in progress.
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6.0 SUMMARY AND CONCLUSIONS

In-this paper we have proposed an extension of the Madey

gain-spread theorem to two-dimensional wigglers and shown it to be

quite generally valid. It has the important consequence that an,FEL

wiggler which yields gain must at the same time generate either

energy spread or transverse excitation. Furthermore w--have found

that in an FEL operating quasi linearly in a storage ring, that

laser gain guarantees the production of entropy with every pass

through the wiggler. Consequently the laser radiation generated is

restricted to be some small fraction of the synchrotron radiation

and our analysis suggests that this fraction is of the order of the
'1

fractional energy aperture. This leads us to conclude that the

achievement of high efficiency steady state storage ring operation

in a quasi linear regime is not possible. Nonetheless, it appears

that gain expanded wigglers may have superior linear gain as

compared with conventional wigglers and thus prove to be useful for

application in storage rings with large tractional energy aperture.
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